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Herein we show that the modal description of deep-water waves on the sea surface 
(Watson & West 1975) is independent of any reference surface around which expan- 
sions of the velocity potential and the surface velocity are done. We demonstrate 
by direct construction that the interaction between long and short waves does not 
lead to divergent terms in the equations of motion when this formalism is used. 

1. Introduction 
In this paper we attempt to lay to rest the criticism that mode-coupling theories 

are incapable of describing the interaction between surface water waves widely 
separated in scale. The criticism arises from the observation that low-order 
approximations to the velocity potential diverge as a product of the long-wave 
amplitude and the short-wave wavenumber (see e.g. 0. M. Phillips 1978, unpublished 
report). This flaw results in an apparent divergence in the dynamic equations 
describing the interaction of two waves having widely separated wavelengths. This 
apparently divergent approximation results from an expansion of the velocity 
potential about the z = 0 surface of the water. Holliday (1977) considered a variant 
of this problem in which the average shift in frequency of a gravity-capillary wave 
produced by an ambient spectrum of such waves was used as a measure of 
convergence of the perturbation series. He calculated this shift on both the surface 
z = 0 and the free surface z = 5, and found that the perturbation series converges 
more rapidly on the latter surface. His analysis established that the lowest-order 
perturbation results of Hasselmann (1962) ( z  = 0) were not usable, whereas those of 
Watson & West (1975) ( z  = <) should be used for analysing nonlinear interactions in 
a spectrum of surface waves. 

Holliday’s arguments have not found universal acceptance, in part because their 
applicability to interacting surface waves widely separated in scale is unclear. Herein 
we present a more direct proof of the convergence of the perturbation series 
describing the interaction between long waves and short waves. To better understand 
the formal argument let us first review the essential features of the criticism. 

Consider the vertical height of the sea surface <(x , t )  and the velocity potential 
+(x, z ,  t )  which satisfies Laplace’s equation V2# = 0 in the ocean interior. The Fourier 
expansion of the free surface is given by 

(1.1) <(x, t )  = f c. e’k‘yk(t) + C.C. 
k 

t Department of Physics, University of California, La Jolla CA 92093, USA. 
$ Visiting Research Physicist, Institute of Konlinear Science, R-002, University of California, 

San Diego, La Jolla CA 92093. 



586 K .  A .  Brueckner and B. J .  West  

and that of the velocity potential satisfying the boundary condition q5 = 0 a t  z = - co 
by 

# ( x , z , t )  = fc eik.xekz$k(t)+c.c., (1.2) 
k 

and C.C. denotes the complex conjugate of the first term. At the free surface z = [(x, t )  
the velocity potential becomes an exponential function of 6, but in the equations 
of motion one uses the Taylor series expansion about the z = 0 reference surface: 

However the surface displacement [(x, t )  itself consists of many scales as is evidenced 
by the wave vector series (1 .  l ) ,  so that one cannot guarantee the convergence of (1.3) 
in general. 

For concreteness let us consider the superposition of two linear one-dimensional 
waves on which to test the convergence of the expansion (1.3). The surface height is 
given by 

and we choose a, = 10 cm, k ,  = 0.01 cm-l, u2 = 1 cm and k, = 0.1 cm-l so that the 
slope of both waves ( ka )  is 0.1. For the argument here we take the maximum surface 
height to be given by the amplitude of the longer wave, c- 10 cm. Only a modest 
numerical error is introduced by this approximation and i t  does not affect the general 
conclusion of our argument. I n  the sum on wavenumber in (1.3) we have the two 
values k, and k,, so that the velocity potential becomes 

<(x,t) = a,  cos(k,s-w,t)+u, cos(k,z-w,t) (1.4) 

In  the first term we have k, %= 0.1 so the series converges rapidly. However k ,  y= 1 
so the second series converges very slowly. Thus, the expansion of the shorter wave 
about the z = 0 surface leads to  a divergent result unless all the terms in the series 
are kept. This is not entirely unexpected since the shorter wave rides atop the longer 
one and is displaced quite far from the z = 0 plane. An expansion in the vicinity of 
the reference plane for a wave whose wavelength is shorter than the displacement 
from the plane would naturally lead to non-physical results. 

Based on the above argument it is often asserted that the modal expansions are 
only useful for very narrow spectra, since only a few terms in the series for the 
velocity potential can be retained in the equations of motion for the sea surface. The 
spectrum cannot be too broad in order that  the Taylor expansion about the reference 
surface converge rapidly. Herein we show that even though the expansion of the 
velocity potential about a reference surface diverges when truncated a t  finite order, 
the equations of motion for the free surface are well behaved. We demonstrate that 
in the formalism of Watson & West (1975, hereinafter referred to  as WW) the 
formally divergent terms cancel against each other in the equations of motion. 

In  $2 we briefly sketch the WW formalism and show that the vertical velocity and 
the velocity potential a t  the free surface are independent of any reference surface. It 
is shown that this independence implies that the approximate equations of motion 
are expansions in the surface slope and not in the surface hieight (see e.g. WW; West 
et al. 1987). In  $ 3  we apply the result of this formalism to the interaction of two 
waves separated in scale and show explicitly that the divergent terms cancel in the 
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equations of motion. In $4 we discuss the original mode-coupled equations of 
Hasselmann (1962, 1963a, b) and argue that they too may be freed of the multiple- 
scale criticism if enough terms are taken. 

2. Watson-West formalism 

are given by Bernoulli's equation and the kinematic boundary condition : 
The equations of motion for an irrotational, incompressible, inviscid water surface 

a ~ ( x ~ z ~ t ) + ~ v $ ( x , z , t ) . v Q ( x , z , t ) + g z  = 0;  z = C(x, t ) ,  
at 

( 2 . l a )  

(2.1b) 

In the interior of the incompressible fluid V - v  = 0 so that the velocity potential 
satisfies Laplace's equation V2q5 = 0. Using this latter condition and the velocity 
potential defined on the free surface $,(x,  t )  = $ [ x ,  z = { ( x ,  t ) ,  t ]  these equations 
become (WW) 

where the vertical velocity is given by 

and V ,  is the horizontal gradient operator. To solve these equations we express W as 
an explicit function of $ , (x , t )  and < ( x , t ) ,  in which case (2.2) constitutes a set of 
nonlinear equations in these two field variables. 

WW obtain a formal solution for the vertical velocity W using Laplace's equation 
and by expanding about a reference surface [,,, 

where K is an operator which multiplies any one- or two-dimensional Fourier 
coefficient of $(x, <,,, t )  by the magnitude of the wave vector k. The series (2.4) and 
(2.5) can be rearranged because {,, commutes with K to yield 
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The product e-co"$(x, co,t)  does not change for different vhoices of c0. Even more 
explicitly if we write 

(2 .8 )  

(2.9) 

Mx ,  t )  = O(x, t )  e-{o"$(x, CO, t ) ,  

W ( x ,  t) = &(x, t )  e-coK$(x, &,, t ) .  

W ( x ,  t )  = &(x, t )  O-Yx, t )  $,(x, 4 

then if the operator O(x, t )  has an inverse O-'(x,t) we can write 

(2.10) 

independent of the reference surface (see West 1981). The expression for the vertical 
velocity (2.10) is therefore a series in the surface slope in that only differences in the 
wave height enter, i.e. a shift of 5 by cO does not modify W .  From this we can conclude 
that the equations of motion are independent of co, 

3. Cancellation of divergent terms 
It may not be obvious how the formal result for the vcrtical velocity (2.10) 

influences the two-scale example worked out in 5 1, and, in particular, how this result 
changes the conclusions arrived at there. Consider again the case of two waves with 
very different wavelengths and amplitudes Lcf. (1.4)] for which the velocity potential 
in one dimension is written 

0 w 
#,(x) = l a ,  s i n ( k , x ) + l a ,  sin(k,x), 

kl k ,  
(3.1) 

where for the moment we suppress the time index for the sake of clarity. The 
formal expression for W ,  (2.10), can be written 

m 

w = c  w, 
n=O 

and evaluating the product &OF' (sec West 1981) the first two terms in ( 3 . 2 )  can be 
written 

(3.3) 

Note that W, has the form of a commutator opening on ujs, i.e. [c, KI = C K - K ~ .  
Thc first term (3.3) is well bchaved. The second term is given explicitly by 

1 Cd 
W, = [a, cos (k, x) + a, cos (k, x)] K' a, sin ( k ,  x) + -> a, sin ( k ,  x) 

Ic , 

A typical cross-term of ( 3 . 5 )  is given by 

w 
I = a a 2 [cos ( k ,  x) K ,  sin (k,x) - K cos (k, x) K sin ( k ,  x)], 

2k ,  

where using the identity 

K cos (k, x) K sin (k, x) = $[lk, + k,( + Ik, - kBl]  k ,  sin (k, x )  cos ( k ,  x) 
+~(lk,+k,l-lle,-k,l) k, sin (k , z )  c o s ( k , x )  
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one obtains 
w 

I = a a ~ { [ k ~ - ~ k , ( ( k , + k , J + I E , - k , l ) ]  sin(k,x) cos(klz) 
' k ,  

-$k,(lkl + k , ~ - ~ k 1 - - k 2 ~ )  sin (klx) cos (k,~)). (3.7) 

Thus, if as in $ 1  a,  9 a, and k, < k,, (3.7) reduces to 

I zz -a,a,w,k,sin (k,x) cos ( k , x ) ,  (3.8) 

demonstrating that the cross-term dependence on k,al cancels. Since this term is 
typical, we see that all terms involving k,a, vanish from W,. The WW formalism 
therefore combines the partially divergent series for the velocity potential and that 
for the vertical velocity in such a way as to yield a convergent series for W directly 
from 6 and q$s. In our two-scale example this results in 

w w 
W, z - - 2 ( k l  al) ,  sin ( k ,  z) cos ( k ,  2) -2 ( k ,  az)' sin ( k ,  x) cos ( k ,  z) 

k l  k2 

- - (k la l )  * 2  (k,a,) sin ( k , z )  cos (k,x), 
k, 

(3.9) 

which is an explicit expansion in the wave slopes k,a, and k,a, ,  and is well behaved 
for klal < 1 and k,a,  < 1. This cancellation is a consequence of the commutation 
operator [C, K ]  acting on ~ q $ ~  on the right-hand side of (3.4). The higher-order factors 
in the series expansion for W can similarly be expressed in terms of commutators, 
thereby ensuring the cancellation of the diverging cross-terms discussed above. 

The formal equations of motion can still be written as a set of nonlinear mode- 
coupled rate equations (see e.g. Hasselmann 1962; WW; West et al. 1987). What 
distinguishes one set of equations from another is the choice of coupling coefficients 
determining the strength of the interaction of one wave with another. I n  the above 
example the W, term leads to cubic nonlinearities in ( 2 . 2 ) ,  with coupling coefficients 
that are a t  least quadratic in the slopes of the two interacting waves. This is where 
most mode-coupling theories leave the analysis, with the notable exception of West 
et al. (1987) who extend the numerical integration of the equations of motion beyond 
third order in the mode amplitudes. 

4. Conclusions 
We have shown that even though the expansions of the velocity potential and the 

vertical velocity about a reference surface may be formally divergent, these series 
can be reordered in such a way that no such divergence in fact occurs a t  a given order 
in the appropriate variables in the equations of motion. This reordering is given 
explicitly by the WW formalism and shows that the dynamic equations on the free 
surface are expressible as an expansion in the surface slope. We worked out the 
example of a long wave interacting with a short wave and demonstrated that to 
second order in the vertical velocity the would-be divergent terms cancel. (These 
terms are third order in the equations of motion). The third-order terms in W can also 
be worked out explicitly, but the algebra becomes onerous. (These terms are fourth 
order in the equations of motion.) We rely on the formal proof in $ 2  that  the velocity 
potential # s  is independent of the reference surface to establish this result in gcneral 
and note that the numerical integration of the dynamic equations support this result 
(see West et al. 1987). 

It is worth emphasizing that in the WW formalism each term in the perturbation 
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series for the vertical velocity can be expressed in terms of commutators. The formal 
structure of the commutators ensures the cancellation of the divergent terms 
discussed in $3. 

We note that the original mode-coupled equations constructed by Hasselmann 
(1962), were quite different from those obtained from (2.2). This difference arises in 
part because Hasselmann makes a double expansion, one in the velocity potential as 
we do, but also a second expansion in the surface height 

(4.2) 

where again the index n gives the order of the dependence of q$n and 5, in the 
perturbation solution by successive approximation. Without presenting any of the 
details we state that the Hasselmann perturbation equations can be obtained from 
those of MiW by introducing the expansion in the height (4.2) into the latter (cf. thc 
Appendix). These equations can subsequently be shown to be independent of the 
reference height. We have been able to do this explicitly up to third order in the 
equation of motion, but again the algebra becomes quitc difficult a t  fourth-order. 
Note that truncating the Hasselmann expansion at  a givcn order destroys the 
commutator form of the series, whereas the WW expansion is expressible in terms of 
commutators at each order. 

As mentioned, Holliday (1977) determined that the lowest-order terms in the 
Hasselmann expansion about z = 0 produces results that ‘by themselves are 
meaningless’. It is possible however to regroup the terrms in that analysis to yield 
those of the WW perturbation series, i.e. to  do a resummation of terms so as to  define 
the mode amplitudes on the free surface rather than on the z = 0 surface. In  the 
Appendix we show explicitly for the first time how the two series are related, from 
which the reader can determine the result of truncating the series a t  a given 
order. 

Thus it would appear that  the major criticism against the use of mode-coupled 
equations to describe the evolution of surface water waves does not hold water. 

This work was supported in part by the La Jolla Institutc Independent Research 
and Development Funds, and the DARPA/URI grant number X0014-86-K-0758. It 
was written while one of us (B. J. W.) was a guest of the School of Mat’hematics, the 
University of New South Wales. 

Appendix. Hasselmann method 

equations 
The Hasselmann equation can be obtained by staxting from the Bernoulli 

a t  2 = 5, i 
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with I& the height of an arbitrarily chosen reference surface. Hasselmann makes the 
double expansion 

4,(x,t) = c ( x - ' ~ ) m  K m  $(x, Q, t )  at z = 6, 

(A 2) 

n 

n 

tn m! 

$(X> 6 0 ,  1 )  = c 4 n ( X ,  60, t ) ,  

a x ,  1)  = c L ( X ,  t), 

with the index n giving the order of 4% and 6, in the perturbation solution by 
successive approximation. Introducing (A 2) into (A 1) gives the sequence of 
equations 

and 

These equations apparently depend on c0. This dependence can be removed by 
making the replacement 

- 
(A 5 )  

J1 = $hl = (e-Kq)l, 

4 2  = $2 - l o  4 1  = (e-"Co 4)2, 

qi3 = ~ 3 - ~ 0 ~ ~ Z + ~ + ~ 2 ~ 1  = (e-KCo$),. 

Substitution of (A 5 )  into (A 3) and (A 4) shows that all terms in C0 are removed, so 
that  the time evolution of 6 is independent of 6,. 

The Hasselmann equations can also be derived from the WW equations. The WW 
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time-evolution equations, written as a perturbation series in $n(x ,  5, t )  and C,, are, to 
third order, 

= -9513 at 
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